skip to main content


Search for: All records

Creators/Authors contains: "Peelaers, Hartwin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Continuous device downsizing and circuit complexity have motivated atomic-scale tuning of memristors. Herein, we report atomically tunable Pd/M1/M2/Al ultrathin (<2.5 nm M1/M2 bilayer oxide thickness) memristors using in vacuo atomic layer deposition by controlled insertion of MgO atomic layers into pristine Al2O3atomic layer stacks guided by theory predicted Fermi energy lowering leading to a higher high state resistance (HRS) and a reduction of oxygen vacancy formation energy. Excitingly, memristors with HRS and on/off ratio increasing exponentially with M1/M2 thickness in the range 1.2–2.4 nm have been obtained, illustrating tunneling mechanism and tunable on/off ratio in the range of 10–104. Further dynamic tunability of on/off ratio by electric field is possible by designing of the atomic M2 layer and M1/M2 interface. This result probes ways in the design of memristors with atomically tunable performance parameters.

     
    more » « less
  2. Abstract

    Spin qubits based on shallow donors in silicon are a promising quantum information technology with enormous potential scalability due to the existence of robust silicon-processing infrastructure. However, the most accurate theories of donor electronic structure lack predictive power because of their reliance on empirical fitting parameters, while predictive ab initio methods have so far been lacking in accuracy due to size of the donor wavefunction compared to typical simulation cells. We show that density functional theory with hybrid and traditional functionals working in tandem can bridge this gap. Our first-principles approach allows remarkable accuracy in binding energies (67 meV for bismuth and 54 meV for arsenic) without the use of empirical fitting. We also obtain reasonable hyperfine parameters (1263 MHz for Bi and 133 MHz for As) and superhyperfine parameters. We demonstrate the importance of a predictive model by showing that hydrostatic strain has much larger effect on the hyperfine structure than predicted by effective mass theory, and by elucidating the underlying mechanisms through symmetry analysis of the shallow donor charge density.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)